- Platform Release 6.5
- Privacera Platform Release 6.5
- Enhancements and updates in Privacera Access Management 6.5 release
- Enhancements and updates in Privacera Discovery 6.5 release
- Enhancements and updates in Privacera Encryption 6.5 release
- Deprecation of older version of PolicySync
- Upgrade Prerequisites
- Supported versions of third-party systems
- Documentation changelog
- Known Issues 6.5
- Platform - Supported Versions of Third-Party Systems
- Platform Support Policy and End-of-Support Dates
- Privacera Platform Release 6.5
- Privacera Platform Installation
- About Privacera Manager (PM)
- Install overview
- Prerequisites
- Installation
- Default services configuration
- Component services configurations
- Access Management
- Data Server
- UserSync
- Privacera Plugin
- Databricks
- Spark standalone
- Spark on EKS
- Portal SSO with PingFederate
- Trino Open Source
- Dremio
- AWS EMR
- AWS EMR with Native Apache Ranger
- GCP Dataproc
- Starburst Enterprise
- Privacera services (Data Assets)
- Audit Fluentd
- Grafana
- Ranger Tagsync
- Discovery
- Encryption & Masking
- Privacera Encryption Gateway (PEG) and Cryptography with Ranger KMS
- AWS S3 bucket encryption
- Ranger KMS
- AuthZ / AuthN
- Security
- Access Management
- Reference - Custom Properties
- Validation
- Additional Privacera Manager configurations
- Upgrade Privacera Manager
- Troubleshooting
- How to validate installation
- Possible Errors and Solutions in Privacera Manager
- Unable to Connect to Docker
- Terminate Installation
- 6.5 Platform Installation fails with invalid apiVersion
- Ansible Kubernetes Module does not load
- Unable to connect to Kubernetes Cluster
- Common Errors/Warnings in YAML Config Files
- Delete old unused Privacera Docker images
- Unable to debug error for an Ansible task
- Unable to upgrade from 4.x to 5.x or 6.x due to Zookeeper snapshot issue
- Storage issue in Privacera UserSync & PolicySync
- Permission Denied Errors in PM Docker Installation
- Unable to initialize the Discovery Kubernetes pod
- Portal service
- Grafana service
- Audit server
- Audit Fluentd
- Privacera Plugin
- How-to
- Appendix
- AWS topics
- AWS CLI
- AWS IAM
- Configure S3 for real-time scanning
- Install Docker and Docker compose (AWS-Linux-RHEL)
- AWS S3 MinIO quick setup
- Cross account IAM role for Databricks
- Integrate Privacera services in separate VPC
- Securely access S3 buckets ssing IAM roles
- Multiple AWS account support in Dataserver using Databricks
- Multiple AWS S3 IAM role support in Dataserver
- Azure topics
- GCP topics
- Kubernetes
- Microsoft SQL topics
- Snowflake configuration for PolicySync
- Create Azure resources
- Databricks
- Spark Plug-in
- Azure key vault
- Add custom properties
- Migrate Ranger KMS master key
- IAM policy for AWS controller
- Customize topic and table names
- Configure SSL for Privacera
- Configure Real-time scan across projects in GCP
- Upload custom SSL certificates
- Deployment size
- Service-level system properties
- PrestoSQL standalone installation
- AWS topics
- Privacera Platform User Guide
- Introduction to Privacera Platform
- Settings
- Data inventory
- Token generator
- System configuration
- Diagnostics
- Notifications
- How-to
- Privacera Discovery User Guide
- What is Discovery?
- Discovery Dashboard
- Scan Techniques
- Processing order of scan techniques
- Add and scan resources in a data source
- Start or cancel a scan
- Tags
- Dictionaries
- Patterns
- Scan status
- Data zone movement
- Models
- Disallowed Tags policy
- Rules
- Types of rules
- Example rules and classifications
- Create a structured rule
- Create an unstructured rule
- Create a rule mapping
- Export rules and mappings
- Import rules and mappings
- Post-processing in real-time and offline scans
- Enable post-processing
- Example of post-processing rules on tags
- List of structured rules
- Supported scan file formats
- Data Source Scanning
- Data Inventory
- TagSync using Apache Ranger
- Compliance Workflow
- Data zones and workflow policies
- Workflow Policies
- Alerts Dashboard
- Data Zone Dashboard
- Data zone movement
- Workflow policy use case example
- Discovery Health Check
- Reports
- How-to
- Privacera Encryption Guide
- Overview of Privacera Encryption
- Install Privacera Encryption
- Encryption Key Management
- Schemes
- Encryption with PEG REST API
- Privacera Encryption REST API
- PEG API endpoint
- PEG REST API encryption endpoints
- PEG REST API authentication methods on Privacera Platform
- Common PEG REST API fields
- Construct the datalist for the /protect endpoint
- Deconstruct the response from the /unprotect endpoint
- Example data transformation with the /unprotect endpoint and presentation scheme
- Example PEG API endpoints
- /authenticate
- /protect with encryption scheme
- /protect with masking scheme
- /protect with both encryption and masking schemes
- /unprotect without presentation scheme
- /unprotect with presentation scheme
- /unprotect with masking scheme
- REST API response partial success on bulk operations
- Audit details for PEG REST API accesses
- Make encryption API calls on behalf of another user
- Troubleshoot REST API Issues on Privacera Platform
- Privacera Encryption REST API
- Encryption with Databricks, Hive, Streamsets, Trino
- Databricks UDFs for encryption and masking on PrivaceraPlatform
- Hive UDFs for encryption on Privacera Platform
- StreamSets Data Collector (SDC) and Privacera Encryption on Privacera Platform
- Trino UDFs for encryption and masking on Privacera Platform
- Privacera Access Management User Guide
- Privacera Access Management
- How Polices are evaluated
- Resource policies
- Policies overview
- Creating Resource Based Policies
- Configure Policy with Attribute-Based Access Control
- Configuring Policy with Conditional Masking
- Tag Policies
- Entitlement
- Service Explorer
- Users, groups, and roles
- Permissions
- Reports
- Audit
- Security Zone
- Access Control using APIs
- AWS User Guide
- Overview of Privacera on AWS
- Configure policies for AWS services
- Using Athena with data access server
- Using DynamoDB with data access server
- Databricks access manager policy
- Accessing Kinesis with data access server
- Accessing Firehose with Data Access Server
- EMR user guide
- AWS S3 bucket encryption
- Getting started with Minio
- Plugins
- How to Get Support
- Coordinated Vulnerability Disclosure (CVD) Program of Privacera
- Shared Security Model
- Privacera Platform documentation changelog
Whitelist py4j security manager via S3 or DBFS
To enforce security, certain Python methods are blacklisted by Databricks. However, Privacera makes use of these methods.
The following error shows default blacklisting security:
py4j.security.Py4JSecurityException: … is not whitelisted”
If you still want to access the Python classes or methods, you can add them to a whitelisting file.
Note
Whitelisting changes Databricks default security. This whitelisting is not absolutely required and depends entirely on your own security policies.
Steps for whitelisting via S3 or DBFS
The whitelisting.txt
file can be stored on either S3 or DBFS. In either case, it's location is configured in the Databricks console.
Create a file called
whitelisting.txt
containing a list of all the packages, class constructors or methods that should be whitelisted.For whitelisting a complete java package (including all its classes), add the package name ending with
.*
. For example:org.apache.spark.api.python.*
For whitelisting constructors of a given class, add the fully qualified class name. For example:
org.apache.spark.api.python.PythonRDD
For whitelisting specific methods of a given class, add the fully qualified class name followed by the method name. For example
org.apache.spark.api.python.PythonRDD.runJobToPythonFile org.apache.spark.api.python.SerDeUtil.pythonToJava
Full example of the above constructs:
org.apache.spark.sql.SparkSession.createRDDFromTrustedPath org.apache.spark.api.java.JavaRDD.rdd org.apache.spark.rdd.RDD.isBarrier org.apache.spark.api.python.*
Upload the file to an S3 or DBFS location that is accessible from Databricks's Spark Application Configuration page.
Suppose the
whitelist.txt
file contains the classes and methods to be whitelisted.- <item>
Example: for Databricks, to upload the whitelisting file, run following command.
dbfs cp whitelist.txt dbfs:/privacera/whitelist.txt
</item><item>To upload the whitelisting file to S3, use the S3 console to upload it to the desired location.
</item>For either S3 or Databricks, in Databricks' Spark Application Configuration, add the full path to the uploaded
whitelisting.txt
file location.This example is for a
whitelisting.txt
file stored in DBFS. You could instead specify an S3 path.spark.hadoop.privacera.whitelist dbfs:/privacera/whitelist.txt
Restart your Databricks cluster.