- Platform Release 6.5
- Privacera Platform Release 6.5
- Enhancements and updates in Privacera Access Management 6.5 release
- Enhancements and updates in Privacera Discovery 6.5 release
- Enhancements and updates in Privacera Encryption 6.5 release
- Deprecation of older version of PolicySync
- Upgrade Prerequisites
- Supported versions of third-party systems
- Documentation changelog
- Known Issues 6.5
- Platform - Supported Versions of Third-Party Systems
- Platform Support Policy and End-of-Support Dates
- Privacera Platform Release 6.5
- Privacera Platform Installation
- About Privacera Manager (PM)
- Install overview
- Prerequisites
- Installation
- Default services configuration
- Component services configurations
- Access Management
- Data Server
- UserSync
- Privacera Plugin
- Databricks
- Spark standalone
- Spark on EKS
- Portal SSO with PingFederate
- Trino Open Source
- Dremio
- AWS EMR
- AWS EMR with Native Apache Ranger
- GCP Dataproc
- Starburst Enterprise
- Privacera services (Data Assets)
- Audit Fluentd
- Grafana
- Ranger Tagsync
- Discovery
- Encryption & Masking
- Privacera Encryption Gateway (PEG) and Cryptography with Ranger KMS
- AWS S3 bucket encryption
- Ranger KMS
- AuthZ / AuthN
- Security
- Access Management
- Reference - Custom Properties
- Validation
- Additional Privacera Manager configurations
- Upgrade Privacera Manager
- Troubleshooting
- How to validate installation
- Possible Errors and Solutions in Privacera Manager
- Unable to Connect to Docker
- Terminate Installation
- 6.5 Platform Installation fails with invalid apiVersion
- Ansible Kubernetes Module does not load
- Unable to connect to Kubernetes Cluster
- Common Errors/Warnings in YAML Config Files
- Delete old unused Privacera Docker images
- Unable to debug error for an Ansible task
- Unable to upgrade from 4.x to 5.x or 6.x due to Zookeeper snapshot issue
- Storage issue in Privacera UserSync & PolicySync
- Permission Denied Errors in PM Docker Installation
- Unable to initialize the Discovery Kubernetes pod
- Portal service
- Grafana service
- Audit server
- Audit Fluentd
- Privacera Plugin
- How-to
- Appendix
- AWS topics
- AWS CLI
- AWS IAM
- Configure S3 for real-time scanning
- Install Docker and Docker compose (AWS-Linux-RHEL)
- AWS S3 MinIO quick setup
- Cross account IAM role for Databricks
- Integrate Privacera services in separate VPC
- Securely access S3 buckets ssing IAM roles
- Multiple AWS account support in Dataserver using Databricks
- Multiple AWS S3 IAM role support in Dataserver
- Azure topics
- GCP topics
- Kubernetes
- Microsoft SQL topics
- Snowflake configuration for PolicySync
- Create Azure resources
- Databricks
- Spark Plug-in
- Azure key vault
- Add custom properties
- Migrate Ranger KMS master key
- IAM policy for AWS controller
- Customize topic and table names
- Configure SSL for Privacera
- Configure Real-time scan across projects in GCP
- Upload custom SSL certificates
- Deployment size
- Service-level system properties
- PrestoSQL standalone installation
- AWS topics
- Privacera Platform User Guide
- Introduction to Privacera Platform
- Settings
- Data inventory
- Token generator
- System configuration
- Diagnostics
- Notifications
- How-to
- Privacera Discovery User Guide
- What is Discovery?
- Discovery Dashboard
- Scan Techniques
- Processing order of scan techniques
- Add and scan resources in a data source
- Start or cancel a scan
- Tags
- Dictionaries
- Patterns
- Scan status
- Data zone movement
- Models
- Disallowed Tags policy
- Rules
- Types of rules
- Example rules and classifications
- Create a structured rule
- Create an unstructured rule
- Create a rule mapping
- Export rules and mappings
- Import rules and mappings
- Post-processing in real-time and offline scans
- Enable post-processing
- Example of post-processing rules on tags
- List of structured rules
- Supported scan file formats
- Data Source Scanning
- Data Inventory
- TagSync using Apache Ranger
- Compliance Workflow
- Data zones and workflow policies
- Workflow Policies
- Alerts Dashboard
- Data Zone Dashboard
- Data zone movement
- Workflow policy use case example
- Discovery Health Check
- Reports
- How-to
- Privacera Encryption Guide
- Overview of Privacera Encryption
- Install Privacera Encryption
- Encryption Key Management
- Schemes
- Encryption with PEG REST API
- Privacera Encryption REST API
- PEG API endpoint
- PEG REST API encryption endpoints
- PEG REST API authentication methods on Privacera Platform
- Common PEG REST API fields
- Construct the datalist for the /protect endpoint
- Deconstruct the response from the /unprotect endpoint
- Example data transformation with the /unprotect endpoint and presentation scheme
- Example PEG API endpoints
- /authenticate
- /protect with encryption scheme
- /protect with masking scheme
- /protect with both encryption and masking schemes
- /unprotect without presentation scheme
- /unprotect with presentation scheme
- /unprotect with masking scheme
- REST API response partial success on bulk operations
- Audit details for PEG REST API accesses
- Make encryption API calls on behalf of another user
- Troubleshoot REST API Issues on Privacera Platform
- Privacera Encryption REST API
- Encryption with Databricks, Hive, Streamsets, Trino
- Databricks UDFs for encryption and masking on PrivaceraPlatform
- Hive UDFs for encryption on Privacera Platform
- StreamSets Data Collector (SDC) and Privacera Encryption on Privacera Platform
- Trino UDFs for encryption and masking on Privacera Platform
- Privacera Access Management User Guide
- Privacera Access Management
- How Polices are evaluated
- Resource policies
- Policies overview
- Creating Resource Based Policies
- Configure Policy with Attribute-Based Access Control
- Configuring Policy with Conditional Masking
- Tag Policies
- Entitlement
- Service Explorer
- Users, groups, and roles
- Permissions
- Reports
- Audit
- Security Zone
- Access Control using APIs
- AWS User Guide
- Overview of Privacera on AWS
- Configure policies for AWS services
- Using Athena with data access server
- Using DynamoDB with data access server
- Databricks access manager policy
- Accessing Kinesis with data access server
- Accessing Firehose with Data Access Server
- EMR user guide
- AWS S3 bucket encryption
- Getting started with Minio
- Plugins
- How to Get Support
- Coordinated Vulnerability Disclosure (CVD) Program of Privacera
- Shared Security Model
- Privacera Platform documentation changelog
Spark standalone
Privacera plugin in Spark standalone
This section covers how you can use Privacera Manager to generate the setup script and Spark custom configuration for SSL/TSL to install Privacera Plugin in an open-source Spark environment.
The steps outlined below are only applicable to the Spark 3.x version.
Prerequisites
Ensure the following prerequisites are met:
A working Spark environment.
Privacera services must be up and running.
Configuration
SSH to the instance as USER.
Run the following commands.
cd ~/privacera/privacera-manager cp config/sample-vars/vars.spark-standalone.yml config/custom-vars/ vi config/custom-vars/vars.spark-standalone.yml
Edit the following properties. For property details and description, refer to the Configuration Properties below.
SPARK_STANDALONE_ENABLE:"true" SPARK_ENV_TYPE:"<PLEASE_CHANGE>" SPARK_HOME:"<PLEASE_CHANGE>" SPARK_USER_HOME:"<PLEASE_CHANGE>"
Run the following commands.
cd ~/privacera/privacera-manager ./privacera-manager.sh update
After the update is complete, the setup script (
privacera_setup.sh
,standalone_spark_FGAC.sh
,standalone_spark_OLAC.sh
) and Spark custom configurations (spark_custom_conf.zip
) for SSL will be generated at the path,cd ~/privacera/privacera-manager/output/spark-standalone
.You can either enable FGAC or OLAC in your Spark environment.
Enable FGAC
To enable Fine-grained access control (FGAC), do the following:
Copy
standalone_spark_FGAC.sh
andspark_custom_conf.zip
. Both the files should be placed under the same folder.Add permissions to execute the script.
chmod +x standalone_spark_FGAC.sh
Run the script to install the Privacera plugin in your Spark environment.
./standalone_spark_FGAC.sh
Enable OLAC
To enable Object level access control (OLAC), do the following:
Copy
standalone_spark_OLAC.sh
andspark_custom_conf.zip
. Both the files should be placed under the same folder.Add permissions to execute the script.
chmod +x standalone_spark_OLAC.sh
Run the script to install the Privacera plugin in your Spark environment.
./standalone_spark_OLAC.sh
Configuration properties
Property | Description | Example |
---|---|---|
| Property to enable generating setup script and configs for Spark standalone plugin installation. | true |
| Set the environment type. It can be any user-defined type. For example, if you're working in an environment that runs locally, you can set the type as local; for a production environment, set it as prod. | local |
| Home path of your Spark installation. | ~/privacera/spark/spark-3.1.1-bin-hadoop3.2 |
| User home directory of your Spark installation. | /home/ec2-user |
| Use the property to enable/disable the fallback behavior to the privacera_files and privacera_hive services. It confirms whether the resources files should be allowed/denied access to the user. To enable the fallback, set to true; to disable, set to false. | true |
Validations
To verify the successful installation of Privacera plugin, do the following:
Create an S3 bucket ${S3_BUCKET} for sample testing.
Download sample data using the following link and put it in the ${S3_BUCKET} at location (s3://${S3_BUCKET}/customer_data).
wget https://privacera-demo.s3.amazonaws.com/data/uploads/customer_data_clear/customer_data_without_header.csv
(Optional) Add AWS JARS in Spark. Download the JARS according to the version of Spark Hadoop in your environment.
cd <SPARK_HOME>/jars
For Spark-3.1.1 - Hadoop 3.2 version,
wget https://repo1.maven.org/maven2/org/apache/hadoop/hadoop-aws/3.2.0/hadoop-aws-3.2.0.jar wget https://repo1.maven.org/maven2/com/amazonaws/aws-java-sdk-bundle/1.11.375/aws-java-sdk-bundle-1.11.375.jar
Run the following command.
cd <SPARK_HOME>/bin
Run the spark-shell to execute scala commands.
./spark-shell
Validations with JWT Token
Run the following command.
cd <SPARK_HOME>/bin
Set the JWT_TOKEN.
JWT_TOKEN="<JWT_TOKEN>"
Run the following command to start spark-shell with parameters.
./spark-shell --conf "spark.hadoop.privacera.jwt.token.str=${JWT_TOKEN}" --conf "spark.hadoop.privacera.jwt.oauth.enable=true"
Validations with JWT token and public key
Create a local file with the public key, if the JWT token is generated by private/public key combination.
Set the following according to the payload of JWT Token.
JWT_TOKEN="<JWT_TOKEN>" #The following variables are optional, set it only if token has it else set it empty JWT_TOKEN_ISSUER="<JWT_TOKEN_ISSUER>" JWT_TOKEN_PUBLIC_KEY_FILE="<JWT_TOKEN_PUBLIC_KEY_FILE_PATH>" JWT_TOKEN_USER_KEY="<JWT_TOKEN_USER_KEY>" JWT_TOKEN_GROUP_KEY="<JWT_TOKEN_GROUP_KEY>" JWT_TOKEN_PARSER_TYPE="<JWT_TOKEN_PARSER_TYPE>"
Run the following command to start spark-shell with parameters.
./spark-shell --conf "spark.hadoop.privacera.jwt.token.str=${JWT_TOKEN}" --conf "spark.hadoop.privacera.jwt.oauth.enable=true" --conf "spark.hadoop.privacera.jwt.token.publickey=${JWT_TOKEN_PUBLIC_KEY_FILE}" --conf "spark.hadoop.privacera.jwt.token.issuer=${JWT_TOKEN_ISSUER}" --conf "spark.hadoop.privacera.jwt.token.parser.type=${JWT_TOKEN_PARSER_TYPE}" --conf "spark.hadoop.privacera.jwt.token.userKey=${JWT_TOKEN_USER_KEY}" --conf "spark.hadoop.privacera.jwt.token.groupKey=${JWT_TOKEN_GROUP_KEY}"
Use cases
Add a policy in Access Manager with read permission to ${S3_BUCKET}.
val file_path = "s3a://${S3_BUCKET}/customer_data/customer_data_without_header.csv" val df=spark.read.csv(file_path) df.show(5)
Add a policy in Access Manager with delete and write permission to ${S3_BUCKET}.
df.write.format("csv").mode("overwrite").save("s3a://${S3_BUCKET}/csv/customer_data.csv")