- Platform Release 6.5
- Privacera Platform Release 6.5
- Enhancements and updates in Privacera Access Management 6.5 release
- Enhancements and updates in Privacera Discovery 6.5 release
- Enhancements and updates in Privacera Encryption 6.5 release
- Deprecation of older version of PolicySync
- Upgrade Prerequisites
- Supported versions of third-party systems
- Documentation changelog
- Known Issues 6.5
- Platform - Supported Versions of Third-Party Systems
- Platform Support Policy and End-of-Support Dates
- Privacera Platform Release 6.5
- Privacera Platform Installation
- About Privacera Manager (PM)
- Install overview
- Prerequisites
- Installation
- Default services configuration
- Component services configurations
- Access Management
- Data Server
- UserSync
- Privacera Plugin
- Databricks
- Spark standalone
- Spark on EKS
- Portal SSO with PingFederate
- Trino Open Source
- Dremio
- AWS EMR
- AWS EMR with Native Apache Ranger
- GCP Dataproc
- Starburst Enterprise
- Privacera services (Data Assets)
- Audit Fluentd
- Grafana
- Ranger Tagsync
- Discovery
- Encryption & Masking
- Privacera Encryption Gateway (PEG) and Cryptography with Ranger KMS
- AWS S3 bucket encryption
- Ranger KMS
- AuthZ / AuthN
- Security
- Access Management
- Reference - Custom Properties
- Validation
- Additional Privacera Manager configurations
- Upgrade Privacera Manager
- Troubleshooting
- How to validate installation
- Possible Errors and Solutions in Privacera Manager
- Unable to Connect to Docker
- Terminate Installation
- 6.5 Platform Installation fails with invalid apiVersion
- Ansible Kubernetes Module does not load
- Unable to connect to Kubernetes Cluster
- Common Errors/Warnings in YAML Config Files
- Delete old unused Privacera Docker images
- Unable to debug error for an Ansible task
- Unable to upgrade from 4.x to 5.x or 6.x due to Zookeeper snapshot issue
- Storage issue in Privacera UserSync & PolicySync
- Permission Denied Errors in PM Docker Installation
- Unable to initialize the Discovery Kubernetes pod
- Portal service
- Grafana service
- Audit server
- Audit Fluentd
- Privacera Plugin
- How-to
- Appendix
- AWS topics
- AWS CLI
- AWS IAM
- Configure S3 for real-time scanning
- Install Docker and Docker compose (AWS-Linux-RHEL)
- AWS S3 MinIO quick setup
- Cross account IAM role for Databricks
- Integrate Privacera services in separate VPC
- Securely access S3 buckets ssing IAM roles
- Multiple AWS account support in Dataserver using Databricks
- Multiple AWS S3 IAM role support in Dataserver
- Azure topics
- GCP topics
- Kubernetes
- Microsoft SQL topics
- Snowflake configuration for PolicySync
- Create Azure resources
- Databricks
- Spark Plug-in
- Azure key vault
- Add custom properties
- Migrate Ranger KMS master key
- IAM policy for AWS controller
- Customize topic and table names
- Configure SSL for Privacera
- Configure Real-time scan across projects in GCP
- Upload custom SSL certificates
- Deployment size
- Service-level system properties
- PrestoSQL standalone installation
- AWS topics
- Privacera Platform User Guide
- Introduction to Privacera Platform
- Settings
- Data inventory
- Token generator
- System configuration
- Diagnostics
- Notifications
- How-to
- Privacera Discovery User Guide
- What is Discovery?
- Discovery Dashboard
- Scan Techniques
- Processing order of scan techniques
- Add and scan resources in a data source
- Start or cancel a scan
- Tags
- Dictionaries
- Patterns
- Scan status
- Data zone movement
- Models
- Disallowed Tags policy
- Rules
- Types of rules
- Example rules and classifications
- Create a structured rule
- Create an unstructured rule
- Create a rule mapping
- Export rules and mappings
- Import rules and mappings
- Post-processing in real-time and offline scans
- Enable post-processing
- Example of post-processing rules on tags
- List of structured rules
- Supported scan file formats
- Data Source Scanning
- Data Inventory
- TagSync using Apache Ranger
- Compliance Workflow
- Data zones and workflow policies
- Workflow Policies
- Alerts Dashboard
- Data Zone Dashboard
- Data zone movement
- Workflow policy use case example
- Discovery Health Check
- Reports
- How-to
- Privacera Encryption Guide
- Overview of Privacera Encryption
- Install Privacera Encryption
- Encryption Key Management
- Schemes
- Encryption with PEG REST API
- Privacera Encryption REST API
- PEG API endpoint
- PEG REST API encryption endpoints
- PEG REST API authentication methods on Privacera Platform
- Common PEG REST API fields
- Construct the datalist for the /protect endpoint
- Deconstruct the response from the /unprotect endpoint
- Example data transformation with the /unprotect endpoint and presentation scheme
- Example PEG API endpoints
- /authenticate
- /protect with encryption scheme
- /protect with masking scheme
- /protect with both encryption and masking schemes
- /unprotect without presentation scheme
- /unprotect with presentation scheme
- /unprotect with masking scheme
- REST API response partial success on bulk operations
- Audit details for PEG REST API accesses
- Make encryption API calls on behalf of another user
- Troubleshoot REST API Issues on Privacera Platform
- Privacera Encryption REST API
- Encryption with Databricks, Hive, Streamsets, Trino
- Databricks UDFs for encryption and masking on PrivaceraPlatform
- Hive UDFs for encryption on Privacera Platform
- StreamSets Data Collector (SDC) and Privacera Encryption on Privacera Platform
- Trino UDFs for encryption and masking on Privacera Platform
- Privacera Access Management User Guide
- Privacera Access Management
- How Polices are evaluated
- Resource policies
- Policies overview
- Creating Resource Based Policies
- Configure Policy with Attribute-Based Access Control
- Configuring Policy with Conditional Masking
- Tag Policies
- Entitlement
- Service Explorer
- Users, groups, and roles
- Permissions
- Reports
- Audit
- Security Zone
- Access Control using APIs
- AWS User Guide
- Overview of Privacera on AWS
- Configure policies for AWS services
- Using Athena with data access server
- Using DynamoDB with data access server
- Databricks access manager policy
- Accessing Kinesis with data access server
- Accessing Firehose with Data Access Server
- EMR user guide
- AWS S3 bucket encryption
- Getting started with Minio
- Plugins
- How to Get Support
- Coordinated Vulnerability Disclosure (CVD) Program of Privacera
- Shared Security Model
- Privacera Platform documentation changelog
Databricks Spark Object-level Access Control Plugin [OLAC] [Scala]
Prerequisites
Ensure the following prerequisites are met:
Dataserver should be installed and confirmed working:
For AWS, configure AWS S3 Dataserver
For Azure, configure Azure Dataserver
Configure Databricks Spark Plugin.
Configuration
Run the following commands.
cd ~/privacera/privacera-manager/ cp config/sample-vars/vars.databricks.scala.yml config/custom-vars/ vi config/custom-vars/vars.databricks.scala.yml
Edit the following properties. For property details and description, refer to the Configuration Properties below.
DATASERVER_DATABRICKS_ALLOWED_URLS : "<PLEASE_UPDATE>" DATASERVER_AWS_STS_ROLE: "<PLEASE_CHANGE>"
Run the following commands.
cd ~/privacera/privacera-manager ./privacera-manager.sh update
Configuration properties
Property | Description | Example |
---|---|---|
| Set the property to enable/disable Databricks Scala. This is found under Databricks Signed URL Configuration For Scala Clusters section. | |
| Add a URL or comma-separated URLs. Privacera Dataserver serves only those URLs mentioned in this property. | https://xxx-7xxxfaxx-xxxx.cloud.databricks.com |
| Add the instance profile ARN of the AWS role, which can access Delta Files in Databricks. | arn:aws:iam::111111111111:role/assume-role |
| Configure Databricks Cluster policy. Add the following JSON in the text area: [{"Note":"First spark conf", "key":"spark.hadoop.first.spark.test", "value":"test1"}, {"Note":"Second spark conf", "key":"spark.hadoop.first.spark.test", "value":"test2"}] |
Managing init script
Automatic Upload
If DATABRICKS_ENABLE is 'true' and DATABRICKS_MANAGE_INIT_SCRIPT is "true", the Init script will be uploaded automatically to your Databricks host. The Init Script will be uploaded to dbfs:/privacera/<DEPLOYMENT_ENV_NAME>/ranger_enable_scala.sh
, where <DEPLOYMENT_ENV_NAME>
is the value of DEPLOYMENT_ENV_NAME
mentioned in vars.privacera.yml
.
Manual Upload
If DATABRICKS_ENABLE is 'true' and DATABRICKS_MANAGE_INIT_SCRIPT is "false" the Init script must be uploaded to your Databricks host.
Open a terminal and connect to Databricks account using your Databricks login credentials/token.
Connect using login credentials:
If you're using login credentials, then run the following command.
databricks configure --profile privacera
Enter the Databricks URL.
Databricks Host (should begin with https://): https://dbc-xxxxxxxx-xxxx.cloud.databricks.com/
Enter the username and password.
Username: email-id@yourdomain.com Password:
Connect using Databricks token:
If you don't have a Databricks token, you can generate one. For more information, refer Generate a personal access token.
If you're using token, then run the following command.
databricks configure --token --profile privacera
Enter the Databricks URL.
Databricks Host (should begin with https://): https://dbc-xxxxxxxx-xxxx.cloud.databricks.com/
Enter the token.
Token:
To check if the connection to your Databricks account is established, run the following command.
dbfs ls dbfs:/ --profile privacera
You should see the list of files in the output, if you are connected to your account.
Upload files manually to Databricks.
Copy the following files to DBFS, which are available in the PM host at the location,
~/privacera/privacera-manager/output/databricks
:ranger_enable_scala.sh
privacera_spark_scala_plugin.conf
privacera_spark_scala_plugin_job.conf
Run the following command. For the value of
<DEPLOYMENT_ENV_NAME>
, you can get it from the file,~/privacera/privacera-manager/config/vars.privacera.yml
.export DEPLOYMENT_ENV_NAME=<DEPLOYMENT_ENV_NAME> dbfs mkdirs dbfs:/privacera/${DEPLOYMENT_ENV_NAME} --profile privacera dbfs cp ranger_enable_scala.sh dbfs:/privacera/${DEPLOYMENT_ENV_NAME}/ --profile privacera dbfs cp privacera_spark_scala_plugin.conf dbfs:/privacera/${DEPLOYMENT_ENV_NAME}/ --profile privacera dbfs cp privacera_spark_scala_plugin_job.conf dbfs:/privacera/${DEPLOYMENT_ENV_NAME}/ --profile privacera
Verify the files have been uploaded.
dbfs ls dbfs:/privacera/${DEPLOYMENT_ENV_NAME}/ --profile privacera
The Init Script is uploaded to
dbfs:/privacera/<DEPLOYMENT_ENV_NAME>/ranger_enable_scala.sh
, where<DEPLOYMENT_ENV_NAME>
is the value ofDEPLOYMENT_ENV_NAME
mentioned invars.privacera.yml
.
Configure Databricks cluster
Once the update completes successfully, log on to the Databricks console with your account and open the target cluster, or create a new target cluster.
Open the Cluster dialog. enter Edit mode.
In the Configuration tab, in Edit mode, Open Advanced Options (at the bottom of the dialog) and then the Spark tab.
Add the following content to the Spark Config edit box. For more information on the Spark config properties, click here.
New Properties
spark.databricks.isv.product privacera spark.driver.extraJavaOptions -javaagent:/databricks/jars/privacera-agent.jar spark.executor.extraJavaOptions -javaagent:/databricks/jars/privacera-agent.jar spark.databricks.repl.allowedLanguages sql,python,r,scala spark.databricks.delta.formatCheck.enabled false
Old Properties
spark.databricks.cluster.profile serverless spark.databricks.delta.formatCheck.enabled false spark.driver.extraJavaOptions -javaagent:/databricks/jars/ranger-spark-plugin-faccess-2.0.0-SNAPSHOT.jar spark.executor.extraJavaOptions -javaagent:/databricks/jars/ranger-spark-plugin-faccess-2.0.0-SNAPSHOT.jar spark.databricks.isv.product privaceraspark.databricks.repl.allowedLanguages sql,python,r,scala
Note
From Privacera 5.0.6.1 Release onwards, it is recommended to replace the Old Properties with the New Properties. However, the Old Properties will also continue to work.
For Databricks versions < 7.3, Old Properties should only be used since the versions are in extended support.
(Optional) To use regional endpoint for S3 access, add the following content to the Spark Config edit box.
spark.hadoop.fs.s3a.endpoint https://s3.<region>.amazonaws.com spark.hadoop.fs.s3.endpoint https://s3.<region>.amazonaws.com spark.hadoop.fs.s3n.endpoint https://s3.<region>.amazonaws.com
In the Configuration tab, in Edit mode, Open Advanced Options (at the bottom of the dialog) and then set init script path. For the
<DEPLOYMENT_ENV_NAME>
variable, enter the deployment name as defined for theDEPLOYMENT_ENV_NAME
variable in thevars.privacera.yml
.dbfs:/privacera/<DEPLOYMENT_ENV_NAME>/ranger_enable_scala.sh
Save (Confirm) this configuration.
Start (or Restart) the selected Databricks Cluster.
Related information
For further reading, see:
If you want to enable JWT-based user authentication for your Databricks clusters, see JWT for Databricks.
If you want PM to add cluster policies in Databricks, see Configure Databricks Cluster Policy.
If you want to add additional Spark properties for your Databricks cluster, see Spark Properties for Databricks Cluster.